

Practical Experiences from 4 Years of Decarbonised HDD Job Sites

of Different Dimensions, Lengths, and Soil Classes

Boris Böhm | MAX STREICHER GmbH & Co. KG aA

STREICHER Group Overview

Internationally operating construction, technology and technical services company

Over 110 years of experience, a wide range of services and specialised equipment

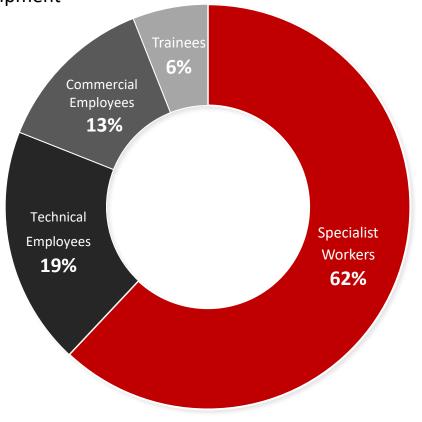
Integrated solutions for major national and international projects

Headquarters: Deggendorf

Locations: Over 30

Associated Companies: 22

Number of Employees: Over 4.500


Business Sectors: • Pipelines and Plants

Mechanical Engineering

Electrical Engineering

Civil and Structural Engineering

Raw and Construction Material

STREICHER Group Overview

- Internationally operating construction, technology and technical services company
- Over 110 years of experience, a wide range of services and specialised equipment

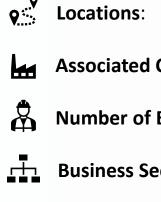
Integrated solutions for major national and international projects

P Headquarters: Deggendorf

Locations: Over 30

Associated Companies: 22

Number of Employees: Over 4.500


Business Sectors: • Pipelines and Plants

Mechanical Engineering

Electrical Engineering

Civil and Structural Engineering

Raw and Construction Material

STREICHER Group HDD

Business Unit STREICHER HDD

Planning, preparation, and execution of horizontal directional drilling (HDD), pipe jacking and vertical directional drilling (VDD) projects.

HDD Pipe Jacking VDD

- Focus on onshore projects and landfall operations
- Capable of:
 - Drilling diameters of up to 1,400 mm
 - lengths reaching 3,000 metres
- Equipment includes
 - High-performance drilling rigs with pulling forces of up to 350 t
 - Fully electric HDD systems under the ecotec label
 - current pulling forces of 20, 45, and 80 t

- Controlled and uncontrolled drilling in confined spaces
- For diameters from DN 200 to DN 1400
- For trenchless crossings with distances under 15 m
- Drillings for geothermal energy and water supply
- Geotechnical investigations and installation of monitoring boreholes

The need to protect Mother Nature is undisputed, therefore a consistent rethinking of the use of fossil-fuelled machines is required, even if it increases investments.

The sectors **energy**, **transport** and **industry** generate the largest share of global CO₂ emissions...

... with the building & construction sector accounting for a significant share

- The pipeline industry is crucial in the energy infrastructure and relevant for the energy-intensive industry
- Decarbonisation of the pipeline industry is mandatory, incl. the need to include a close look to your job sites
- Multiple influences contribute to the overall CO₂ output related job sites
- Work must be done properly, regardless of the eco-friendly solution applied
- Identifying drivers and causes for CO₂ emissions related to the job sites is the starting point

CO₂ Producer Groups

• Most CO₂ drivers and causes can be divided into the following three CO₂ producer groups:

Technologies to be used

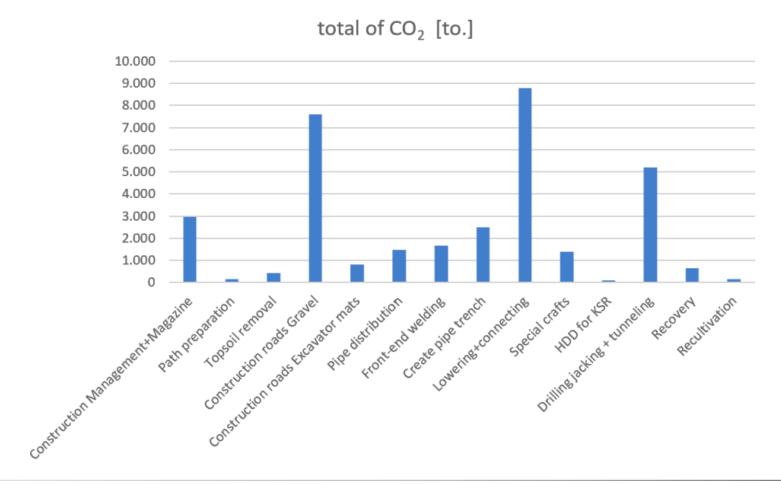
Equipment to be used

- CO₂ calculators are available for calculating the ecological footprint of individual private households
- No reliable CO₂ calculator covers all areas of typical complex pipeline job sites

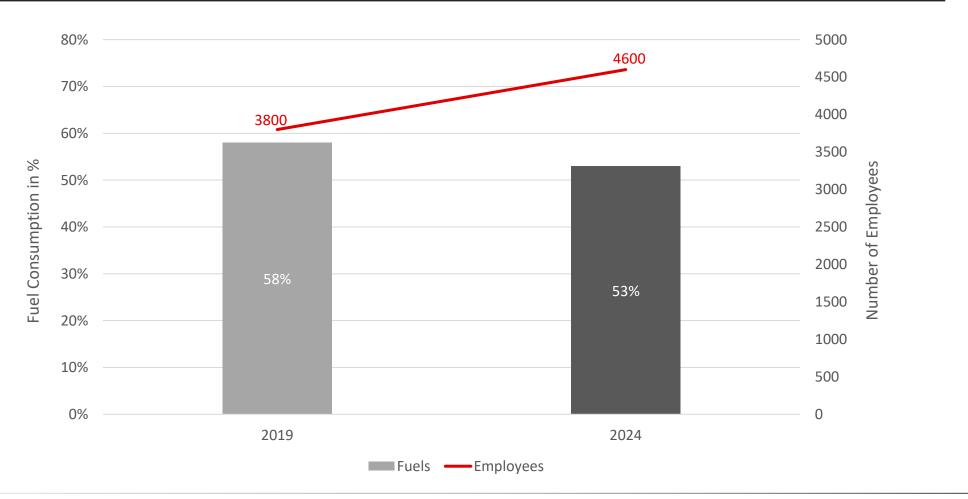
CO₂ Producer Groups

- Even without a pipeline job site CO₂ calculator, typical emission drivers can be recognised
- In addition to the major emitters, especially small CO₂ sources are also worth noting, since...

... many pennies make a dollar


Each reduction on many small areas adds up to a remarkable CO₂ saving in the end, and...

... a penny saved is a penny earned


Analysis of a typical pipeline job site in Germany in terms of CO₂ emissions

Fuel Consumption of the STREICHER Group compared to Number of Employees

Selected HDD References With Fully Electric HDD Equipment

North Germany HVDC Project

- 12,000 m drillings (120 750 m each), 4 parallel drillings
- Sandy soil

Donauwörth Water Pipeline Project

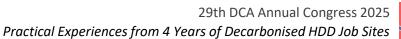
- 603 m drilling, 510 mm steel pipe
- Clay, sandstone

Bogen Danube River Crossing

- 300 m drilling (with mud motor),
 250 mm drinking water pipe
- Blue basalt

Plattling Isar River Crossing

Duct installation under the river


South Germany HVDC Project

- 10,000 m drillings (230 400 m each)
- Clay, gravel, claystone, sandstone, loam

Selected HDD References With Fully Electric HDD Equipment

Netherlands

- 320 m drilling, 650 m reaming, 300 mm steel pipe, 90 mm protective conduit
- 1000 m drilling, 4 x 250 mm HDPE pipe

Images courtesy of © Daniël de Raat, Van Leeuwen Sleufloze Technieken B.V.;

Herrenknecht HK45

Selected HDD References With Fully Electric HDD Equipment

Netherlands

- 1063 m drilling, 315 mm pipe, 2x 200 PE
- 983 m drilling, 315 mm pipe, 2 x 200 PE
- Several drillings from 250 to 470 m, each 6 x 125 mm + 1 x 110 mm

Germany

Several drillings from 280 to 370 m, each 3x 225 mm + 1 x 160 mm

Images courtesy of © A.Hak– used with permission.

CO₂ Reduction Through Planning & Logistics

CO₂ Producer Group: Planning & Logistics

- Experience shows that up to a third of the project duration can be saved, which automatically means that CO₂ emissions can be significantly reduced simply by keeping the construction site infrastructure available for a shorter period...
- Catchy examples from this group are e.g. the choice of how to transport needed construction machinery, the creation of a perfected overall infrastructure and a stockpile of critical parts, tools and emergency response teams

CO₂ Producer Group: Choice of Technology

Different technical approaches can be chosen to do the same job...

 E.g. you could dig a pipe trench with shovels, or you could use excavators or maybe trenchers

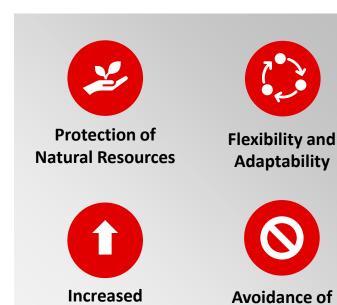
 Another example can be the decision whether to lay a section of a pipeline using the open trench method or by using trenchless technologies....

Trenchless Technologies compared to Open-Cut Trenching

With an open trench, many necessary work steps contribute to the overall carbon footprint of the job site. These are e.g.:

- amount of material to be removed
- fuel consumption of construction equipment
- location of the construction site in combination with the required transport routes
- number of necessary truck loads

Disruptions


Trenchless Technologies compared to Open-Cut Trenching

- Minimal surface disruption
- No or minimal surface restoration needed
- Fewer transport movements
- Shorter construction duration for same route
- Higher drilling energy consumption, but offset by reduced earthworks

Significant exemplary savings include up to*:

- ¾ less in CO₂ emission
- an overall 70+% saving in diesel consumption

Efficiency

Construction Roads: Gravel Roads, Wooden Plank Roads, Steel Plates

Choice of low emission construction road types are a key lever for a sustainable job site

- Lower fuel usage
- Reduced material consumption
- Compliance with environmental standards

Construction Roads: Gravel Roads, Wooden Plank Roads, Steel Plates

Choice of low emission construction road types are a key lever for a sustainable job site

- Lower fuel usage
- Reduced material consumption
- Compliance with environmental standards

Solar Container

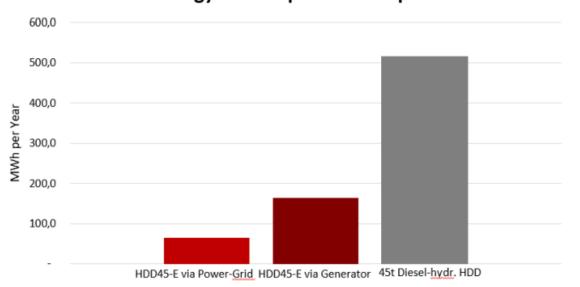
- Reliable energy supply
- Sustainable alternative for diesel generators
- Easily transportable and deployable on different sites
- Operates silently
- Minimises soil and air pollution

Saving Potential of the Dual Rod System

DUAL ROD SYSTEM		MUD MOTOR
Dual-rod assembly	Driveline	Drill head powered by drilling fluid
Mechanical drive – better overall efficiency	Efficiency	High hydraulic losses reduce efficiency
Lower consumption – Lower blowout risk due to reduced annular pressure	Drilling Fluid	Higher consumption – Higher blowout risk – requires additional effort to manage and mitigate blowouts
Less equipment necessary	System Requirements	More equipment necessary

Fully Electric HDD Rigs

Advantages	Challenges
Environmentally friendly	 Limited power supply on remote sites
 Low noise emission – ideal for residential/ nature zones 	 Limited power supply compared to diesel rigs
 High efficiency – no hydraulic losses 	 Technology still in development
 Energy recovery and storage possible 	 Training for operators required
 Low maintenance – fewer moving parts 	 Complex electronics
 Precise control – precise torque/ speed 	
 Flexible energy sources: grid, generator or hydrogen 	



HDD45-E via Power- <u>Grid</u>	HDD45-E via Generator	45t Diesel- <mark>hydraulic</mark> HDD <u>system</u>
Electricity	Heating oil	Diesel
65,3 Megawatt hours	16.240 Liter	52.800 Liter
65,3 Megawatt hours	163,2 Megawatt hours	517,4 Megawatt hours

Annual energy consumption in comparison

Working days per year	165
Working <u>hours</u> per <u>day</u>	8
Energy content heating oil kWh/liter	10,1
Energy content diesel kWh/liter	9,8

Energy Sources for Electric Machinery and Appliances

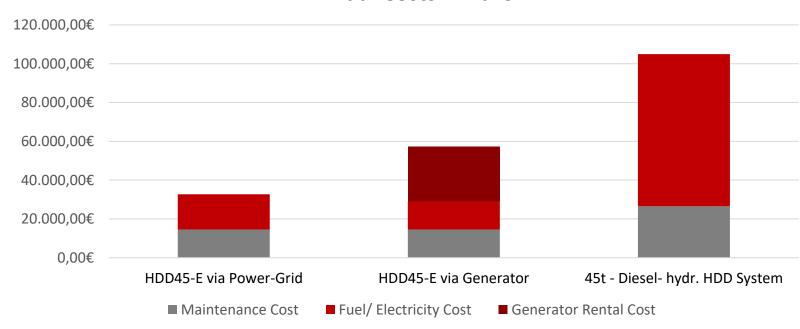
Energy Source	Advantages	Challenges
Green Electricity (grid)	Very low emissions, stable, cost-effective	Sufficient grid connection required
Mobile Battery Storage	Emission-free, low noise, mobile	Limited capacity, charging infrastructure required
Photovoltaics + Battery	Self-sufficient, sustainable, ideal for long-term construction sites	Weather-dependent, space requirements, investment costs
Green Hydrogen	Emission-free, high energy density	Expensive, infrastructure still in development
Hybrid Generators (Diesel + Battery)	Flexible, reduces emissions and fuel consumption	Not completely emission- free, maintenance required

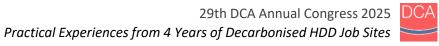
Recommendations:


- Sites with grid connections: green electricity
- Sites without grid connections: mobile battery + PV modules
- Emission-sensitive zones: fully electric rigs + battery storage/ green electricity
- Large-scale projects:
 modular energy containers
 + PV, battery + generator

Annual CO₂ emissions

Rig	Energy source	Quantity	Unit	Factor	CO ₂ emissions/year [t]
HDD45-E via Power-Grid (Electricity mix)	Electricity	65.285,00	kWh	0,0004340	28,33
HDD45-E via Power-Grid (PV Electricity)	Electricity	65.285,00	kWh	0,0000566	3,69
HDD45-E via Generator	Heating Oil	16.240,05	kWh	0,0031087	50,49
45t Diesel-hydraulic HDD System	Diesel	52.800,00	kWh	0,0034100	180,05





Annual Costs in Euro

	HDD45-E via Power Grid	HDD45-E via Generator	45t – Diesel-hydr. HDD System
Maintenance	14.541,66 €	14.541,66 €	26.544,43 €
Fuel/ Electricity Cost	18.149,23 €	14.566,29 €	78.421,82 €
Generator Rental Cost	- €	28.264,50 €	- €
Total	32.690,89 €	57.372,45 €	104.966,25 €

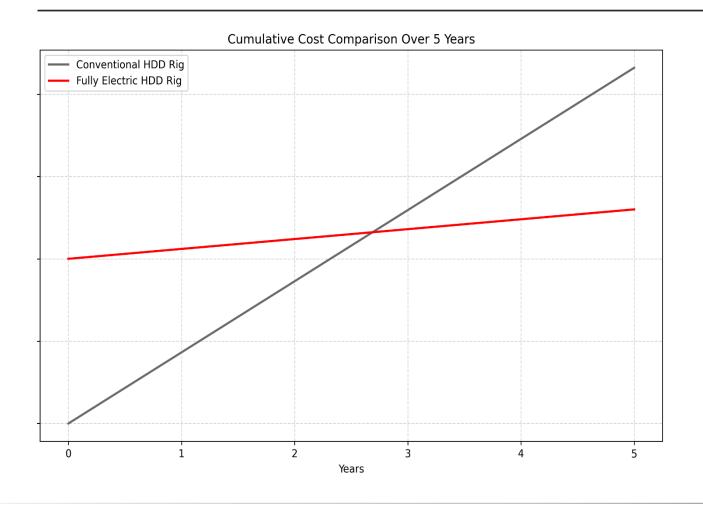
Maintenance Costs: Fully Electric vs. Conventional HDD Rigs

Aspect	Fully Electric HDD Rig	Hydraulic HDD Rig
Hydraulic Maintenance	Minimal	High
Motor Maintenance	Low (electric)	High (diesel)
Spare Parts Demand	Low	High
Diagnostics & Control	Digital, automated	Manual, partly analogue
Total Maintenance Cost	30-50% lower	≈70% higher

Maintenance Cost Drivers

- Hydraulic oil changes
- Hydraulic filter replacements
- Diesel engine maintenance
- Electric motor inspection

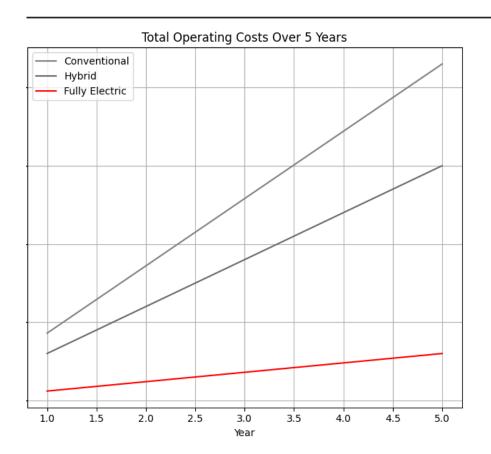
- Software diagnostics and updates
- General inspection
- Hydraulic leak detection and repair

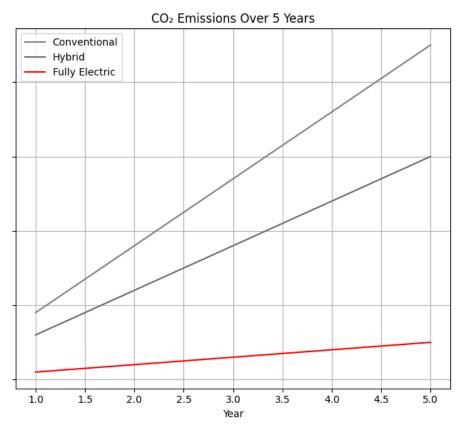


Amortisation: Fully Electric HDD Rigs (example)

Key Takeaways

- Higher initial investment compared to conventional rigs
- Significantly lower operational costs
- Pays off within ≈ 5 years
- Longer usage = greater savings
- Rising diesel prices accelerate payback
- Remain cost-effective even with rising electricity prices
- Outperform conventional rigs over 5 years in several scenarios





Simulation of Conventional, Fully Electric and Hybrid HDD Rigs Over 5 Years

- → Fully electric rigs are the most cost-effective and sustainable option
- → Hybrid rigs offer a strong middle ground

Tender Advantages with Fully Electric HDD Rigs

Germany

- Sustainability criteria are considered more frequently
- Low-emission rigs meet legal and pilot project requirements

Netherlands

- Emission-free equipment already required in 10% of tenders
- Strategic fit with national circular economy goals

Other EU Countries

- EU law allows environmental criteria in tenders
- Countries like DK, NO, NL apply CO₂ limits or penalties

Training Operators of Fully Electric HDD Rigs

Basic and Specialist Courses

- DVGW certified HDD training
- e.g. BAU-ABC Rostrup, Bohrmeisterschule Celle
- DCA seminars (geology, drilling fluids, equipment)

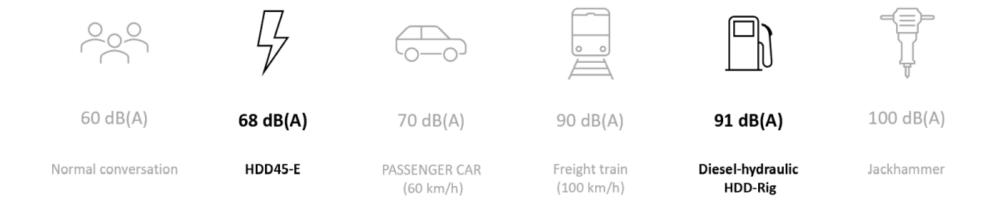
Practical Training

- VR simulators
- On-site hands-on sessions

Technical Qualifications

- Electrical safety certification (DGUV/ DIN VDE)
- Drilling fluid handling courses

Best Practices


- Combine theory, practice and simulation
- Use certified programmes
- Interdisciplinary teams
- Regular refreshers on technology, standards and safety

Excursus - Noise Emissions and Sound Pressure Level

Critical value: Daily noise exposure level > 80 dB(A)
Long-term exposure has negative effects on physical and mental health

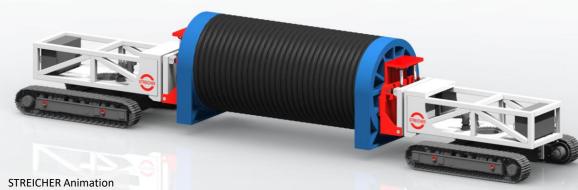


Further Development of Eco-Friendly Solutions

Rigs from the ecotec HDD-E series

- All-electric drilling rigs
- Battery buffer
- Very low noise emissions
- Reduced CO₂ emissions
- Flexible feed-in
- Very suitable for nature conservation zones
- Anti-collision systems
- Double rod system (in development)




Further Development of Eco-Friendly Equipment

CO₂ Reduction on Construction Sites

Top Measures

Alternative Construction Materials

< 70%

Optimised Logistics and Means of Transport

10 – 15%

Material Recycling

< 60%

Digital Planning and Process Optimisation

5 – 10%

Electrified Machinery

30 - 50%

Carbon Capture and Storage (CCS) at Cement Factories

< 90%

Use of Renewable Energy

10 – 20%

Use of Low-Carbon Cement and Concrete

20 - 40%

Project Examples

- Sea Lock Ijmuiden (Netherlands): Efficient pumps, optimised constr. processes, sustainable material choices
- Strategy Roadmap *Baustelle 2045* (Germany): Electrified machinery, digital planning, circular economy approaches
- Circular Economy Projects (McKinsey/ WEF): Reuse of concrete and steel, CO₂ storage in cement production

CO₂ Reduction on HDD Job Sites

Top Measures

Choice of HDD Method Instead of Open-Cut

30 - 50%

Optimisation of the Drilling Fluid (Recycling & Additives)

10 – 15%

Electrification of HDD Rigs

20 - 40%

Digital Planning and Control

5 - 10%

Reduction of Transport Emissions

10 – 15%

Energy-Independent Site Setup

5 – 10%

HDD Project Examples

- Baltic Pipe Project (Denmark/ Poland): Use of HDD instead of open-cut, fluid recycling, optimised logistics
- Trans Atlantic Pipeline (Greece/ Albania): Local materials, efficient drilling rigs, digital planning
- HDD project for Gasunie (Netherlands): Electric pumps, drilling fluid recycling, use of HVO100
- Fibre-Optic Installation via HDD (Scandinavia): Small electric HDD rigs, mobile PV systems

MAX STREICHER GmbH & Co. KG aA

Schwaigerbreite 17 D-94469 Deggendorf Phone +49 991 330-0 Fax +49 991 330-180 info@streicher.de www.streicher.de

Boris Böhm

Phone +49 991 330-5812 boris.boehm@streicher.de ecotec@streicher.de

